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Trapped Fermions in Gravitational Field
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Trapped noninteracting Fermi gas in an external gravitational field in Newtonian ap-
proximation is considered. Analytical equations for chemical potential, internal energy,
and specific heat of trapped Fermi gas are computed. The spatial distribution of com-
pletely degenerate fermions in nonhomogeneous gravitational field is calculated. The
effects of the influence of gravitational field on Fermi gas are discussed.
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1. INTRODUCTION

The impressive achievements in the experiments with the trapping and cool-
ing of the ensembles of alkali atoms (Andersonet al., 1995; Bradleyet al., 1995;
Daviset al., 1995; Friedet al., 1998) have led to the growth of interest in the study
of the properties of confined degenerate qauntum gases. From the technical point
of view the fermions (Cataliottiet al., 1998; DeMarcoet al., 1999; McAlexander
et al., 1995) can be trapped and cooled in much the same way as bosons. Magneti-
cally trapped fermions are the ideal quantum systems for studying the variety of the
effects for degenerate Fermi ensembles. In the same way as bosonic quantum sys-
tems, the Fermi gas can provide us with complementary information on the prop-
erties of Fermi quantum system at the macroscopic level. In view of the successful
experiments with the trapping and cooling of weakly interacting fermionic isotopes
it is important to theoretically investigate their thermodynamical and statistical
properties. Along with the experiments the behavior of noninteracting Fermi gas
has been studied in theoretical works for the approximation of a small number of
fermions (Schneider and Wallis, 1998) as well as in the semiclassical Thomas–
Fermi approximation (Butts and Rokhsar, 1997; Noronha and Toms, 2000). The
purpose of this paper is to examine thermodynamical properties of trapped non-
interacting Fermi gases in gravitational fields. In this paper we extend the efforts
on the analytical study of thermodynamical behavior of Fermi ensembles taking
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into account the interaction of fermions with the gravitational field. We analyze
the influence of nonhomogeneous gravitational field on the specific heat and on
the chemical potential of ideal trapped quantum Fermi gas. We will also provide
analytical computations of the size of atomic cloud and its dynamics.

For the study of the thermal properties of ideal gas of trapped fermions we
will start with the computation of the single particle energy. The single particle
Hamiltonian is the sum of kinetic and potential energies

H = Ep
2

2m
+ Vext, (1)

wherem is the mass of the particle, and the potential energy is written as the sum of
trap potential and gravitational contribution:Vext = Vtrap+ Vg. The contribution
from the harmonic trap to the potential energy has the form

Vtrap= m

2

(
ω2

xx2+ ω2
yy2+ ω2

zz2
)
, (2)

and the gravitational contribution isVg = m8( EX0). To take into account the inter-
action with gravitational field, we expand the gravitational potential8( EX0) about
the center of the magnetic trap with coordinatesEX0 = {x, y, z}, and write it in the
form

8 = 80( EX0)− gi ( EX0)xi + 1

2
0i j ( EX0)xi x j , (3)

wheregi = −∂8( EX0)/∂xi is gravitational acceleration and0i j ( EX0) = ∂28( EX0)/
∂xi ∂x j are components of gravity gradient tensor. One can introduce a local
coordinate system in such a way that the components of gravitational accel-
eration will be defined asgx = gy = 0, andgz = −|Eg|, then the trap potential
will be

Vtrap= mω2

2

(
γ 2

x (0)x2+ γ 2
y (0)y2+ γ 2

z (0)z2
)+mgz+m80, (4)

where we keep only diagonal (leading) components of gravity gradient tensor for
the selected coordinate basis of the trap. The coefficientsγ of this equation

γ 2
x (0) =

(
1+ 0xx

ω2
x

)
, γ 2

y (0) = λ2

(
1+ 0yy

ω2
y

)
, γ 2

z (0) = λ′2
(

1+ 0zz

ω2
z

)
,

(5)
depend on diagonal components of gravity gradient tensor and asymmetry param-
eters of the trapλ, λ′. The angular frequencies are defined here asωx = ω, ωy =
λω, andωz = λ′ω. Combining (1) and (4), one can finally write the equation for
the Hamiltonian (1) as

H = Ep
2

2m
+ mω2

2

(
γ 2

x (0)x2+ γ 2
y (0)y2+ γ 2

z (0)z2
)+mgz+m80. (6)
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The total single particle energy is found from the solution of time independent
Schrödinger equation with Hamiltonian (6) and is written as the sum of two
contributions

Enx ,ny,nz(g, 0) = Enx ,ny,nz(0)+ E′(g, 0). (7)

The first contribution is

Enx ,ny,nz(0) = hω[γx(0)nx + γy(0)ny + γz(0)nz], (8)

wherenx, ny, andnz are positive integers. The second one is

E′(g, 0) = hω

2
[γx(0)+ γy(0)+ γz(0)] +m80− D2(g, 0), (9)

whereD2(g, 0) = g2m/2(ωγz(0))2. The total number of fermions in the trapN
and their internal energyU can be computed from the equations

N =
∞∑

nx ,ny,nz=0

(z−1eβEnx ,ny ,nz + 1)−1 (10)

and

U =
∞∑

nx ,ny,nz=0

Enx ,ny,nz(z
−1eβEnx ,ny ,nz + 1)−1, (11)

where β = 1/T is the inverse temperature andz is fugacity. The fugacity
z= exp(βµ) in these equations is defined by the chemical potentialµ =
µ′ − E′(g, 0) and absorbsE′(g, 0) contribution.

2. CHEMICAL POTENTIAL, INTERNAL ENERGY
AND SPECIFIC HEAT

For the computation of the number of particles and internal energy of the
system, we will rewrite the triple sum in Eqs. (10) and (11) in the form of the inte-
gral over the single particle energy. To perform this transformation, we represent
Eqs. (10) and (11) as

N =
∫ ∞

0
dξ1

∫ ∞
0

dξ2

∫ ∞
0

dξ3(z−1eβε + 1)−1 (12)

and

U =
∫ ∞

0
dξ1

∫ ∞
0

dξ2

∫ ∞
0

dξ3 ε(z
−1 eβε + 1)−1, (13)
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where ε = hω[γx(0)ξ1+ γy(0)ξ2+ γz(0)ξ3] is the function of new variables
ξ1, ξ2, andξ3. After reducing the number of integrations, we get

N =
∫ ∞

0

1

z−1 eβε + 1
D(ε) dε (14)

and

U =
∫ ∞

0

ε

z−1 eβε + 1
D(ε) dε, (15)

where the functionD(ε) defines the density of states

D(ε) = ε2

2γx(0)γy(0)γz(0) (hω)3
. (16)

To obtain the equation for the number of particles, we will perform the integration
introducing the new variablesx = βε andν = ln z, and using Eq. (35). The result
will be

N = 1

2γx(0)γy(0)γz(0)(hω)3

(
T

hω

)3 ∫ ∞
0

x2 dx

ex−ν + 1

= (Tν)3

6γx(0)γy(0)γz(0)(hω)3

(
1+ π

2

ν2
+ · · ·

)
. (17)

From Eq. (17) we find the expansion for the chemical potential at low temperature
limit

µ(N, T, 0) = ẼF(N, 0)

[
1− π

2

3

(
T

ẼF(N, 0)

)]
, (18)

where

ẼF(N, 0) = hω[6Nγx(0)γy(0)γz(0)]1/3 (19)

is the Fermi energy. Degeneracy temperatureTF = ẼF(N, 0) depends on gravita-
tional contributions for a fixed number of fermions and trap parameters. For the
trap with axial symmetry the ratioα−1δTF/TF, whereδTF andα are defined as
δTF = TF(g, 0)− TF andα = 0zz/6ω2, is a monotonic function of trap parameter
λ′ for the fixed components of gravity gradient tensor (Fig. 1). For the spherically
symmetric trap (λ′ = 1), the Fermi energy of trapped Fermi gas at gravitational
field is of the order ofo(02

zz/ω
4) and one can assume that the Fermi temperature

TF is not changed.
Let us obtain the equation for the chemical potential at a high temperature

limit. For this purpose one can expand the integrand in (14) as a series of powers
z e−βε in assumption thatz¿ 1 and write the result as

N =
∫ ∞

0
z e−βε(1− z e−βε + · · ·) D(ε) dε. (20)
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Fig. 1. The ratioα−1δTF/TF as a function of parameterλ′ for the trap with
axial symmetry.

Keeping only the first term, we find the fugacity of the Boltzmann gas

zBol(N, T, 0) = 1

6

(
ẼF(N, 0)

T

)3

. (21)

The chemical potential is found easily from the last equation

µBol(N, T, 0) = −T ln

[
6

(
T

ẼF(N, 0)

)3
]
. (22)

The internal energy for the finite Fermi system in a magnetic trap is found from
Eqs. (15) and (35). The resulting equation for the internal energy of Fermi gas
will be

U = T4

2γx(0)γy(0)γz(0)(hω)3

∫ ∞
0

x3 dx

ex−ν + 1

= (Tν)4

8γx(0)γy(0)γz(0)(hω)3

(
1+ 2

π2

ν2
+ · · ·

)
. (23)

Using Eqs. (17) and (23), we get the asymptotic expansion for the internal energy
in the form

U (N, T, 0) = 3

4
NẼF(N, 0)

[
1+ 2π2

3

(
T

ẼF(N, 0)

)2

+ · · ·
]
. (24)

The specific heat of the trapped fermion in external gravitational field is computed
as a derivative of the internal energyC = ∂U/∂T . The resulting equation for a
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Fig. 2. The ratioδC/C as a function of the parameterλ′ for the trap with
axial symmetry.

specific heat will be

C

N
= π2T

ẼF(N, 0)
. (25)

In a high temperature limit we get well-known relationC/N = 3. The dependence
α−1δC/C on λ′ for the trap with axial symmetry is given by a plot of Fig. 2. As
it has been pointed out, the parameterα depends on component0zz of gravity
gradient and radial frequencyω. The shift of the specific heatδC is defined as the
differenceδC = C(g, 0)− C. For the spherically symmetric trap (λ = λ′ = 1),
the specific heat of the trapped Fermi gas in gravitational field is of the order of
o(02

zz/ω
4).

3. TRAPPED FERMIONS IN SEMICLASSICAL REGIME

In many cases it is helpful to use semiclassical theory to overcome mathe-
matical difficulties in the description of collective phenomena. The semiclassical
approach allows us to obtain the spatial distribution for a large number of trapped
fermions in external gravitational field. To perform the necessary computations, let
us assume that the Fermi ensemble be in equilibrium in varying external potential∏

(Er , 0) of the form∏
(Er , 0) = mω2

2

(
γ 2

x (0)x2+ γ 2
y (0)y2+ γ 2

z (0)z2
)
. (26)
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If all quantum states in the region atEr are filled to the Fermi energy, then one can
write the equation

h2k2
F(Er )

2m
+
∏

(Er , 0) = ẼF, (27)

where Fermi energỹEF is the constant of the system, and the local Fermi wave
numberkF(Er ) is related to fermion densityn(Er ) according to the equationk3

F(Er ) =
6π2n(Er ). The equation for the density of particles is found from (27) and has the
following form

n(Er , 0) = 1

6π2

[
2mẼF

h2

(
1− ρ̃

2(Er , 0)

R̃2
F

)]3/2

, (28)

where ˜ρ(Er , 0) = [γ 2
x (0)x2+ γ 2

y (0)y2+ γ 2
z (0)z2]1/2 is the effective distance from

the center of the ellipsoid to the pointEr with coordinates (x, y, z), and R̃F =
[2ẼF/mω2]1/2 defines the axis of the ellipsoid. The ellipsoid axes depend on the
components of gravity gradienttensor,andthey are defined asRi (0) = 2R̃Fγ

−1
i (0),

where the indexi runs throughi = x, y, z. As follows from Eqs. (28), the density
at the center of the cloud isn(0)= (2mẼF)3/2/6π2h3. For the estimation of the
fermion density and the size of the ensemble, one can use Eq. (19) for Fermi energy
ẼF(N, 0). As one can see, the size of the ensemble and the central density depend
on the total number of fermionsN and the components of gravity gradient tensor.
For the trap with axial symmetry the resulting equation for the central density of
fermions depends on the third component0zz, radial frequencyω, and asymmetry
parameterλ′:

n(0)= 1

π2

(
Nλ′

6

)1/2(2mω

h

)3/2[
1− 3α

2

(
1− 1

λ′2

)]
. (29)

As it has been shown, the properties of trapped Fermi gas depend on the charac-
teristics of gravitational field. The expressions for the chemical potential, Fermi
energy, internal energy, and the specific heat depend on the diagonal components
of gravity gradient tensor.

In the conclusion it could be important to point out two features in the compu-
tation of thermodynamical characteristics of trapped fermions. First, the equations
for the chemical potential, Fermi energy, total energy, and the specific heat of
noninteracting ensemble of degenerate Fermi gas include the interaction with
gravitational field by the productγxγyγz. Second, the diagonal components of
gravity gradient tensor0i j are not independent.2 Gravity gradient tensor has a zero
trace, therefore one can introduce only two independent diagonal components. The

2 The gravity gradient tensor is symmetric0i j = 0 j i . Its trace is related to the local mass densityρ by
the Poisson’s equation

∑
i 0i i = 4πGρ, whereG is gravitational constant.



P1: FHD

International Journal of Theoretical Physics [ijtp] PP597-379783-02 September 2, 2002 10:56 Style file version May 30th, 2002

1488 Kulikov

harmonic trap also has two independent parametersλ andλ′, which give us the
way to sellect the number of independent components of gravity gradient tensor.
The contribution of each diagonal component can be estimated independently by
an appropriate selection of the parameters of the trap. For the different values of
the parametersλ′ andλ′, the productγxγyγz can be written as

γxγyγz =


λ2+ (0xx/2ω2) (λ2− 1) λ = λ′ 6= 1

λ+ (0yy/2ω2) (λ−1− λ) λ 6= 1, λ′ = 1

λ′ + (0zz/2ω2) (λ′−1− λ′) λ = 1, λ′ 6= 1

(30)

andγxγyγz ≈ 1+ o(0i i 0 j j /ω
4) for the trap with axial symmetry (λ = λ′ = 1).

The results clearly show that for parametersλ andλ′, which are defined in (30),
the chemical potential, the total energy, and the specific heat will depend on only
one component of gravity gradient tensor. Specifyingλ = λ′ 6= 1 we obtain that
these values depend only on the first component of gravity gradient0xx. For
λ 6= 1, λ′ = 1 they will depend on the second component0yy, and forλ = 1,
λ′ 6= 1, we find that the chemical potential, the internal energy, and the specific
heat depend only on the third component0zz. For given0zz, the ratiosα−1δTF/TF

and α−1δC/C for the Fermi temperature and the specific heat are monotonic
functions of the parameterλ′ of axially symmetric trap. These functions are shown
in Figs. 1 and 2. The shape of the cloud of completly degenerate trapped fermions
(gas at a temperature of absolute zero) is defined by Eqs. (28), and has the shape
of an ellipsoid.3

4. APPENDIX

The low temperature approximation for the number of particles and internal
energy can be obtained by the partial integration of the integral

∫ ∞
0

xn dx

ex−ν + 1
= 1

(n+ 1)

∫ ∞
0

xn+1 ex−ν dx

(ex−ν + 1)2

= 1

(n+ 1)

∫ ∞
−ν

(t + ν)n+1 et dt

(et + 1)2

= 1

(n+ 1)

[∫ ∞
−∞

(t + ν)n+1 et dt

(et + 1)2
−
∫ −ν
−∞

(t + ν)n+1 et dt

(et + 1)2

]
. (31)

3 The source of gravitational field is not specified in our calculations. For the Earth gravity, for example,
the diagonal components of gravity gradient tensor are0E = (GME/R3)diag (−2, 1, 1) where0E =
(GME/R3) = 1.5× 103Eö.
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The second integral in (31) is of the ordero(e−ν), and the first one can be found
by using a Taylor expansion:

1

(n+ 1)

∫ ∞
−∞

(t + ν)n+1 et dt

(et + 1)2

= 1

(n+ 1)

∫ ∞
−∞

et dt

(et + 1)2
×
(
νn+1+ (n+ 1)

1!
νnt + n(n+ 1)

2!
νn−1t2+ · · ·

)
= 1

(n+ 1)
νn+1I0+ νn I1+ n

2
νn−1I2+ · · · (32)

The first integral in this equation is trivial

I0 =
∫ ∞
−∞

et dt

(et + 1)2
= 1. (33)

All the integrals for oddn are zeros, and the integrals with evenn are given by the
equation

In =
∫ ∞
−∞

tn et dt

(et + 1)2
= (n− 1)!(2n) (1− 21−n)ζ (n), (34)

whereζ (n) is the Riemann zeta function. The result will be written in the form∫ ∞
0

xn dx

ex−ν + 1
= νn+1

(n+ 1)

[
1+ n(n+ 1)

6

π2

ν2
+ · · ·

]
, (35)

where the expressionI2 = π2/3 was used.
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