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Trapped Fermions in Gravitational Field
Igor K. Kulikov !
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Trapped noninteracting Fermi gas in an external gravitational field in Newtonian ap-
proximation is considered. Analytical equations for chemical potential, internal energy,
and specific heat of trapped Fermi gas are computed. The spatial distribution of com-
pletely degenerate fermions in nonhomogeneous gravitational field is calculated. The
effects of the influence of gravitational field on Fermi gas are discussed.
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1. INTRODUCTION

The impressive achievements in the experiments with the trapping and cool-
ing of the ensembles of alkali atoms (Andersdral, 1995; Bradleyet al.,, 1995;
Daviset al,, 1995; Friecet al,, 1998) have led to the growth of interest in the study
of the properties of confined degenerate gauntum gases. From the technical point
of view the fermions (Cataliot&t al, 1998; DeMarceet al, 1999; McAlexander
et al, 1995) can be trapped and cooled in much the same way as bosons. Magneti-
cally trapped fermions are the ideal quantum systems for studying the variety of the
effects for degenerate Fermi ensembles. In the same way as bosonic quantum sys-
tems, the Fermi gas can provide us with complementary information on the prop-
erties of Fermi guantum system at the macroscopic level. In view of the successful
experiments with the trapping and cooling of weakly interacting fermionic isotopes
it is important to theoretically investigate their thermodynamical and statistical
properties. Along with the experiments the behavior of noninteracting Fermi gas
has been studied in theoretical works for the approximation of a small number of
fermions (Schneider and Wallis, 1998) as well as in the semiclassical Thomas—
Fermi approximation (Butts and Rokhsar, 1997; Noronha and Toms, 2000). The
purpose of this paper is to examine thermodynamical properties of trapped non-
interacting Fermi gases in gravitational fields. In this paper we extend the efforts
on the analytical study of thermodynamical behavior of Fermi ensembles taking
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into account the interaction of fermions with the gravitational field. We analyze
the influence of nonhomogeneous gravitational field on the specific heat and on
the chemical potential of ideal trapped quantum Fermi gas. We will also provide
analytical computations of the size of atomic cloud and its dynamics.

For the study of the thermal properties of ideal gas of trapped fermions we
will start with the computation of the single particle energy. The single particle
Hamiltonian is the sum of kinetic and potential energies

52
H= % + Vextv (1)

wheremis the mass of the particle, and the potential energy is written as the sum of
trap potential and gravitational contributioVe,: = Virap + V. The contribution
from the harmonic trap to the potential energy has the form
m
Virap = > (60)2<X2 + w§y2 + wfzz), (2)
and the gravitational contribution & = m¢()?o). To take into account the inter-
action with gravitational field, we expand the gravitational poterigo) about

the center of the magnetic trap with coordina¥gs= {x, vy, z}, and write it in the
form

- .1
@ = o(Xo) — gi(Xo)X' + ST (Xo)x'x!, )
whereg, = —3®(Xo)/dx! is gravitational acceleration arit; (Xo) = 82®(Xo)/

ax'ax! are components of gravity gradient tensor. One can introduce a local
coordinate system in such a way that the components of gravitational accel-

eration will be defined agx = g, = 0, andg, = —|g|, then the trap potential
will be
— m_wz 2 2 2 2 2 2
Vtrap - 2 (Vx (F)X + yy (F)y + Yz (F)Z ) + mgz+ m(DO! (4)

where we keep only diagonal (leading) components of gravity gradient tensor for
the selected coordinate basis of the trap. The coefficientithis equation

r r r
YAT) = (1+ —XZX> . yA) =22 (1+ —y2y> . yAD) =22 <1+ —222) :
wy wy wy
5)
depend on diagonal components of gravity gradient tensor and asymmetry param-
eters of the trap, A’. The angular frequencies are defined here,as: o, wy =
Aw, andw, = M'w. Combining (1) and (4), one can finally write the equation for
the Hamiltonian (1) as
B2

ma)2
H=__+ T(yxz(r)x2 + 2 (D) + v2(T)Z°) + mgz+ mdo.  (6)
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The total single particle energy is found from the solution of time independent
Schigdinger equation with Hamiltonian (6) and is written as the sum of two
contributions

Eannyynz(g' F) = Enany,nz(F) + E/(gl F) (7)
The first contribution is

Enx,ny,nz(r) = hw[Vx(F)nx + Vy(F)ny + VZ(F)nz]a (8)

whereny, ny, andn, are positive integers. The second one is

h
E'(9, 1) = - [(D) + %(1) + 7a(I)] + mdo - DX, 1), (9)

whereD?(g, I') = g?m/2(wy,(I"))?. The total number of fermions in the trayp
and their internal energy can be computed from the equations

00
N = Z (ZfleﬂEnx,ny,nZ + 1)71 (10)
nx;”y,nZ:O
and
00
e Z Enx,ny,nz(zileﬂE”Xv"yvnz + 1)71, (11)
nx;”y,nZ:O

where 8 = 1/T is the inverse temperature armis fugacity. The fugacity
Zz=-exp@u) in these equations is defined by the chemical potentiat
w — E'(g, T") and absorb&’(g, I') contribution.

2. CHEMICAL POTENTIAL, INTERNAL ENERGY
AND SPECIFIC HEAT

For the computation of the number of particles and internal energy of the
system, we will rewrite the triple sum in Egs. (10) and (11) in the form of the inte-
gral over the single particle energy. To perform this transformation, we represent
Egs. (10) and (11) as

n= [ s [ " de, [ " des(z b + 1) (12)

and

u- [ ey | " e, | des ez e 1), (13)
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where e = ho[yx(I')&1 + yy(I)é2 + y2(I')&3] is the function of new variables
&1, &, andé&s. After reducing the number of integrations, we get

& 1
N :/o Tige 11 1D(e) de (14)
and
o €

where the functiorD(¢) defines the density of states

€2

2yx(D)yy(D)y2(T) (hw)?
To obtain the equation for the number of particles, we will perform the integration

introducing the new variables= e andv = In z, and using Eq. (35). The result
will be

D(e) =

(16)

N — 1 <l)3 ®©  x2dx
= 2Oy ey \he) Jy o1
_ (Tv)® 2
= 5Dy (D) (ho) <1+ e ) ()

From Eq. (17) we find the expansion for the chemical potential at low temperature
limit

~ 72 T
w(N, T,T) = EE(N, ') [1 Y <m>} , (18)
where
Er(N, T") = ho[BNy, (1) (T)y(1)] 3 (19)

is the Fermi energy. Degeneracy temperafigre= Ex(N, I') depends on gravita-
tional contributions for a fixed number of fermions and trap parameters. For the
trap with axial symmetry the ratia =15 T-/ Tr, wheresTr and« are defined as
8Te = Te(g, T) — Tr anda = I',,/60w?, is @ monotonic function of trap parameter
A’ for the fixed components of gravity gradient tensor (Fig. 1). For the spherically
symmetric trap X’ = 1), the Fermi energy of trapped Fermi gas at gravitational
field is of the order ob(I"2,/»*) and one can assume that the Fermi temperature
Tk is not changed.

Let us obtain the equation for the chemical potential at a high temperature
limit. For this purpose one can expand the integrand in (14) as a series of powers
z e P¢ in assumption that « 1 and write the result as

N = /OO zeP(l—ze P 1 ...) D(e) de. (20)
0
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Fig. 1. The ratioo 18 T¢/ Tk as a function of parametaf for the trap with
axial symmetry.

Keeping only the first term, we find the fugacity of the Boltzmann gas

= 3
1/Er(N,T
The chemical potential is found easily from the last equation
T 3
N, T, T)=-TIn [ 6| =——— ) 22
sa(N, T, T) [ (eas) } @2)

The internal energy for the finite Fermi system in a magnetic trap is found from
Egs. (15) and (35). The resulting equation for the internal energy of Fermi gas
will be

U= T4 ©  x3dx
 2(Mny(D)y(D)(hw)? Jo e +1
(Tv)? ( 72 )
= 1+2—+---]). 23
8 D)y (M) \- T 502 F (23)

Using Egs. (17) and (23), we get the asymptotic expansion for the internal energy
in the form

3~ 22 T 2
UN, T, I)=-NE(N, ) [14+ — | =———— . 24
(T =g NEx )[+ s (emm) * } )
The specific heat of the trapped fermion in external gravitational field is computed
as a derivative of the internal ener@y= 0U/dT. The resulting equation for a
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Fig. 2. The ratioSC/C as a function of the parametgtfor the trap with
axial symmetry.

specific heat will be

c__ =T (25)
N ~ Ex(N,TI)

In a high temperature limit we get well-known relatiGfiN = 3. The dependence

a~18C/C on A’ for the trap with axial symmetry is given by a plot of Fig. 2. As

it has been pointed out, the parameatedepends on component,, of gravity
gradient and radial frequenay. The shift of the specific hedC is defined as the
differencesC = C(g, I') — C. For the spherically symmetric trap & A’ = 1),

the specific heat of the trapped Fermi gas in gravitational field is of the order of

o(IZ,/w*).

3. TRAPPED FERMIONS IN SEMICLASSICAL REGIME

In many cases it is helpful to use semiclassical theory to overcome mathe-
matical difficulties in the description of collective phenomena. The semiclassical
approach allows us to obtain the spatial distribution for a large number of trapped
fermions in external gravitational field. To perform the necessary computations, let
us assume that the Fermi ensemble be in equilibrium in varying external potential

[1(F, T) of the form

2
[16. 1) = 5= (20 + vy + v, (26)
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If all guantum states in the region@are filled to the Fermi energy, then one can
write the equation

h?kE(F)
2m

+]]F 1) = Ee, (27)
where Fermi energ¥e is the constant of the system, and the local Fermi wave

numberkg(F) is related to fermion density(i) according to the equatidg(’) =
672n(F). The equation for the density of particles is found from (27) and has the

following form
R 1 [2mE 52(F, )\ 1%/
n@, T) [ F(l—’o = )} , (28)

~ 62| 2

wherep(', ') = [y2(1)x? + yZ(I)y? + y2(I') 2] /2 is the effective distance from

the center of the ellipsoid to the poifitwith coordinates X, y, z), and Rs =
[2Er/mw?]Y/2 defines the axis of the ellipsoid. The ellipsoid axes depend on the
components of gravity gradienttensor, and they are definB(B$ = 2Ry, ~(I"),

where the index runs through = x, y, z. As follows from Egs. (28), the density

at the center of the cloud i%0) = (2mEg)%2/672h%. For the estimation of the
fermion density and the size of the ensemble, one can use Eq. (19) for Fermi energy
Er(N, I'). As one can see, the size of the ensemble and the central density depend
on the total number of fermiond and the components of gravity gradient tensor.
For the trap with axial symmetry the resulting equation for the central density of
fermions depends on the third componEgy, radial frequency, and asymmetry
parametei.’:

O OGNS T

As it has been shown, the properties of trapped Fermi gas depend on the charac-
teristics of gravitational field. The expressions for the chemical potential, Fermi
energy, internal energy, and the specific heat depend on the diagonal components
of gravity gradient tensor.

In the conclusion it could be important to point out two features in the compu-
tation of thermodynamical characteristics of trapped fermions. First, the equations
for the chemical potential, Fermi energy, total energy, and the specific heat of
noninteracting ensemble of degenerate Fermi gas include the interaction with
gravitational field by the product,yyy,. Second, the diagonal components of
gravity gradient tensdr;; are not independeftGravity gradient tensor has a zero
trace, therefore one canintroduce only two independent diagonal components. The

2The gravity gradient tensor is symmetfig = I'j;. Its trace is related to the local mass dengpityy
the Poisson’s equatiop; I'ii = 47 Gp, whereG is gravitational constant.
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harmonic trap also has two independent parameétensdA’, which give us the

way to sellect the number of independent components of gravity gradient tensor.
The contribution of each diagonal component can be estimated independently by
an appropriate selection of the parameters of the trap. For the different values of
the parameters’ and)’, the productxyyy, can be written as

M (Txx/20?) (A2 —=1) A=A #1
ryvz=1 *+ [Cy/20) (A1 =2) r#1, 1 =1 (30)
VA (Tz/20?) (W2 =2) A=1,1#1

and yxyyy; & 1+ o(Ti T'jj /w*) for the trap with axial symmetryx(= " = 1).

The results clearly show that for parameterand)’, which are defined in (30),

the chemical potential, the total energy, and the specific heat will depend on only
one component of gravity gradient tensor. Specifying 1’ # 1 we obtain that
these values depend only on the first component of gravity gradiigntFor

A # 1,2 =1 they will depend on the second compon&yy, and forx =1,

A" # 1, we find that the chemical potential, the internal energy, and the specific
heat depend only on the third componEgs. For givenr',,, the ratiosy 18T/ T¢

and «~18C/C for the Fermi temperature and the specific heat are monotonic
functions of the parametef of axially symmetric trap. These functions are shown

in Figs. 1 and 2. The shape of the cloud of completly degenerate trapped fermions
(gas at a temperature of absolute zero) is defined by Egs. (28), and has the shape
of an ellipsoid?

4. APPENDIX

The low temperature approximation for the number of particles and internal
energy can be obtained by the partial integration of the integral

* x"dx 1 o0yl eX—v gy
0 ex—"+1_(n—|—1)/o (& + 1)
1 ® (t 4 v)"*letdt
=<n+1>/,v (€ +1)2
1

_ * (t+vy)"ttedt 7V (t+v)"Tedt
= rD Um @117 -/ @117 ] 1)

3The source of gravitational field is not specified in our calculations. For the Earth gravity, for example,
the diagonal components of gravity gradient tensofizre= (G Mg/R%)diag (-2, 1, 1) wherd g =
(GMg/R3) = 1.5 x 10°Eb.
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The second integral in (31) is of the ord&e~"), and the first one can be found
by using a Taylor expansion:

1 /00 (t +v)"letdt
n+1) /) (&+1)2

1 >~ edt 1 1
=(n+1)/ - X<V”+1+(n+ Jyng o DO )v“‘1t2+"'>
1

oo (68 4+ 1) 1! 2!
n
_ N+l Ny =™, 4. 32
(n+1)V otV 1+2V 2+ (32)
The first integral in this equation is trivial
©  gdt
lo = — =1 33
° /m (¢ +17 53)

All the integrals for oddh are zeros, and the integrals with eveare given by the
equation

= / TUEd (n- e -2 e (34)
n — . (et + 1)2 - . { I
where¢ (n) is the Riemann zeta function. The result will be written in the form
oo nd n+1 1 2
= DL, (35)
o €v+1 (n+1) 6 12

where the expression = 72/3 was used.
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